
An Iterative Random PSO to minimize Total-flow-
time in Flowshop Scheduling
M. M. Ghumare#1, Mrs. L. A. Bawoor*2, Dr. S. U. Sapkal#3

Department of Computer Engineering#1,*2,Savitribai Phule Pune University, Pune

Department of mechanical Engineering#3, Walchand College of Engineering, Sangali
India

Abstract— Flowshop scheduling is an interdisciplinary
challenge of addressing major optimality criteria of
minimizing makespan and total-flow-time. The enumerations
for finding the probabilities for improving the utilization of
resources turn this problem towards NP-Hard. Particle Swam
Optimization (PSO) has proven its ability to find of near
optimal solution when problem size is large. Local search
techniques increase ability of PSO and prevent PSO from
getting stuck into local optima. This paper proposes
modification in PSO an Iterative Random PSO without use of
any local search technique. It uses re-initialization of
population at every iteration; due to which there is no
possibility of getting stuck into local optima. The proposed
method achieves total-flow-time objective of flowshop
scheduling. Computational results are obtained with 110
benchmark instances of Taillard and compared for the total-
flow-time criterion. Ultimately, 80 instances out of 110 best
known solutions provided by DPSOVNDwere improved by
IRPSO. There is still scope of improving IRPSO for dataset of
5 machines, it gives near optimal solution but not better one.

Keywords— Metaheuristics; particle swarm optimization (PSO);
iterative random PSO (IRPSO); flowshop scheduling; total-flow-
time(tft), optimization.

I. INTRODUCTION

Flowshop scheduling is an interdisciplinary challenge
and less contributed by computer science researchers.
Flowshop scheduling is to processing n jobs on m machines.
Major challenges to no-wait (continuous) flowshop
scheduling include total flow time, makespan and
computation time these are known as optimality criteria[1].
Flowshop scheduling is NP-Hard problem.

Flowshop scheduling aims to find out sequence on
jobs(n) to be processed on all machines(m). Opted sequence
must be able to minimize makespan or total-flow-time.

Flowshop scheduling can be done with greedy methods,
dynamic programming and artificial intelligence techniques
such as heuristics and metaheuristics; but it still faces
problem in achieving optimality criteria. Dynamic
programming techniques are computationally slow and
cannot find out solution for large number of problem size.
Heuristics are feasible to find solution for even greater
problem size and also have computationally better
performance. If problem size goes on increasing then
finding out approximate optimal solution with heuristic is
less feasible. To overcome this drawback we are adopting
metaheuristics.

Metaheuristics work better on higher problem size
giving approximate optimal solution. It uses local approach;
constructive approach; or evolutionary approach.
Metaheuristics include genetic algorithm and swarm
intelligence techniques such as ant colony algorithm(ACO),
bee colony algorithm(BCO), particle swarm
optimization(PSO).

PSO is invented by James Kennedy and Russell
Eberhart (1995) to synchrony of flocking behavior of birds’
efforts to maintain an optimum distance between
themselves and their neighbors [2].PSO is evolutionary
algorithm that has local search ability.

PSO has broadly shown its ability is optimization.
Following are some areas where PSO is used for
optimization:

1. Data clustering [3];
2. Data classification [4];
3. Wireless sensor networks [5];
4. Cloud computing [6];
5. Production scheduling [7-20];

PSO has effective performance in production shop
scheduling; including job shop scheduling, flowshop
scheduling, open shop scheduling. Production scheduling
can be optimized by optimizing one or more criteria among,
total flow time, makespan, computation time.

Total-flow-time is contributed less as compare to
makespan and computation time by the researchers.
Minimizing tft results into increased productivity. Among
flowshop and job shop scheduling, flowshop scheduling has
less contribution; hence we opted to optimize flowshop
scheduling. Flowshop scheduling with increased jobs and
machines size are solved with PSO to minimize makespan,
total-flow-time and computational time objectives.

B. Liu, L. Wang et al. [7] optimized no-wait flowshop
by minimizing total flow time; where simulated annealing
is used with PSO to enhance local search ability. C.-J. Liao
and P. Luarn[8] used discrete version of PSO(DPSO); they
incorporated a local search scheme using insertion and
interchange mechanism into the proposed PSO algorithm
(called PSO-LS), with this tft is minimized but it requires
more computation time. Manas Ranjan Singh & S. S.
Mahapatra [9] considered flexible flowshop scheduling for
optimization with PSO using mutation and improved
makespan optimization. Q-K. Pan, M. Fatih Tasgetirenc et
al. [10] used discrete PSO DPSO and local search with
variable neighborhood descent (VND) algorithm based on

 M. M. Ghumare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3261-3265

www.ijcsit.com 3261

variable neighborhood search (VNS); it minimizes
makespan and total flow time for no-wait flowshop. I.-H.
Kuo, S.-J. Horng et al. [11] used individual
enhancement(IE) scheme with PSO for enhancement of
local search ability and as well used random encoding to
enhance global search ability of PSO and successfully
minimized makespan. P. Damodaran, A. G. Rao et al. [12]
proposed heuristics to modify particle position.
Improvement in heuristic is proposed with constructive
Knapsack heuristic and batch formation NEH heuristic for
particle generation; they achieved minimization of
makespan. M. Akhshabi, R. Tavakkoli-Moghaddam and F.
Rahnamay-Roodposhti [13] extended PSO with memetic
algorithm (MA) that hybridizes with a local search method;
it significantly improved optimization of tft. S. Chowdhury,
W. Tong, et al. [14] developed mixed-discrete particle
swarm optimization (MDPSO) for diversity preservation.
Separate diversity metrics and diversity preservation
mechanism is carried out for continuous and discrete design
variables. MDPSO gives better results in case of
unconstrained problem set.

With the survey [15] we have found that PSO with
heuristics for local search increases performance of PSO
called as hybrid PSO (HPSO). HPSO is able to optimize
makespan, tft and computation time.

In this paper we introduce modified PSO called iterative
random PSO (IRPSO) without using any local search
algorithm considering total-flow-time objective.
Computational results depict efficiency of IRPSO as
compared with discrete PSO by Quan-Ke. Pan, M. Faith
Tasgetiren, Yun-Chia Liang [10].

In section-II we discuss about basics of flowshop
scheduling; section-III gives PSO algorithm; section-IV
describes proposed PSO (i.e. IRPSO) and section-V and
section-VI depicts experimental setup and computational
results respectively; section-VII concludes the paper.

II. FLOWSHOP SCHEDULING

Flowshop scheduling is given as, set of n jobs and m
machines to be processed in processing time (pij) i.e.
processing time of ith job on jth machine with the only
constraint that each job is to be processed once on every
machine. Sequence α given with {α1, α2…, αn} is n jobs to
be processed on m machines. Ability of flowshop to allow
processing of jobs on distinctive machines with constant
sequence α allows each possible sequence to get considered
for scheduling. Given matrix of size n x m with processing
time pij will have (n!) number of permutations i.e. feasible
solution from which optimal sequence is to be opted.

Delay between two machines is calculated by δ time. δi,k

is minimum delay time between start of job i and start of
job k where job k follows job i. (1≤ i ≤ n, 1 ≤ k ≤n, i ≠ k).
Delay matrix represents delay time between current job and
next job to be submitted.

Makespan is total time requires for one job to complete
from all machines. Ci is completion time of ith job given by
eq. (1). δi,k is given by by eq. (2). TFT is number total time
required by all machines to complete entire given jobs by

eq. (3). The problem to determine a sequence α that
minimizes TFT.

For i= 1, 2,…., n and j= 1, 2,…., m

When number of machines and jobs increases,
enumerations to find out total permutation also increase
drastically. Flowshop scheduling is NP-Hard more than
three machines. Conventional algorithms with exact method
to find of sequence of jobs on machines are not able to
provide solution for more than three machines and three
jobs. Thus we are adopting metaheuristic particle swarm
optimization (PSO) to optimize flowshop scheduling.Page
Layout

Your paper must use a page size corresponding to A4
which is 210mm (8.27") wide and 297mm (11.69") long.
The margins must be set as follows:

 Top = 19mm (0.75")
 Bottom = 43mm (1.69")
 Left = Right = 14.32mm (0.56")

Your paper must be in two column format with a space
of 4.22mm (0.17") between columns.

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization is algorithm that start with
initialization of population (i.e. swarm). Swarm is
initialized with position and velocity. Search space is where
swarms move to get appropriate position. Particle changes
their position and velocity with following equations.
Particles have their own best coordinates i.e. known as
pbest. Particle finds their best position by coordinating with
neighborhood particle and this is known as lbest. When
particle choose best value from their entire topological
neighbor then this best value is known as gbest. Finding the
gbest from lbest boosts performance of PSO. Thus it is
challenging to find lbest as value of lbest contributes to
gbest.

Vi(k+1)  ω*Vi(k) + c1* rand() * (Pi(k)  Xi(k)) 

 c2rand()(g(k)-Xi(k)) 

Xi(k1)  Xi(k)  Vi(k+1) 

Where,
ω is inertia weight
Vi(k) is velocity of particle i at iteration k.
Xi(k) is the position of particle i at iteration k.
Vi(k+1) is velocity of particle i at iteration k+1.
Xi(k+1) is the position of particle i at iteration k+1.
rand() is random number between (0,1).
c1 cognitive acceleration coefficient.
c2 social acceleration coefficient.

 M. M. Ghumare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3261-3265

www.ijcsit.com 3262

IV. ITERATIVE RANDOM PSO

From survey of “Application of Particle Swarm
Optimization for Production Scheduling” [15] we have
analyzed that, parameters of PSO that affect performance
are,

i. Local and global acceleration coefficient,
ii. Inertia weight,
iii. Initialization of particles.
iv. Termination Criteria
We have focused on these basics, and successfully

modified these parameters to increase performance of PSO
without use of any heuristic for local search. We are
proposing PSO with slight modification in dynamics
mentioned above; modified algorithm is given below.

Particles update their position depending on choice of
initial population and finds pbest and lbest. If the initial
population choice goes incorrect; updating particles at every
iteration may not give near optimal solution tough local
search applied. Thus choosing initial population randomly
may affect results of PSO. To overcome this drawback we
are proposing new method called Iterative Random PSO
(IRPSO).

IRPSO uses random initialization of particles at every
iteration and updates the particles depending on given
initialization. Each job is kept constant on first position for
random initialization.

Fig.1 Population Initialization at Each Iteration

Velocity is initialized with the following equation, and
random value is taken between 0 to 1.

vmin + (vmax - vmin) * random(0,1) (6)

At first iteration when particle is initialized, velocity of
particles is calculated with eq. (1). Afterwards the velocity
of the particles is updated using particle at global best
velocity.

Updating particles at every iteration is done with
velocity and position change using Eqs. (4) & (5). Each of
this iteration finds a local best which in turns contribute to
find out global best.

Linearly decreasing value of inertia weight (ω) may lack
global search ability of PSO at the end of run. As re-
initialization of particles at every run avoids PSO to lack
global search ability; ω is initialized with constant value
(0.2).

Total number of evaluation and iteration causes
premature convergence in PSO. To avoid premature
convergence; algorithm is terminated after n runs i.e. when
nth job is initialized at first position algorithm is terminated.

PSO has always been found to stuck into local optima.
Tough use of heuristics for local search with PSO has less
possibility to get stuck to local optima; it may get stuck to
local optima. IRPSO will never get stuck to the local
optima due to re-initialization of population after each
iteration.

Algorithm for IRPSO:

Algorithm stated in fig.1 describes working of IRPSO,
i_size is number of iterations which is equal to number of
jobs n and p_size is particle count which is also n.

Algorithm IRPSO:

Fig 2. Pseudo-code for IRPSO

V. EXPERIMENTAL SETUP

According to metaheuristic PSO discussed in Section I,
we applied the iterative random PSO described in Sections
III and IV.

Parameters to be considered in PSO implementation are
local and global acceleration coefficient c1 and c2. Values
for c1 and c2 were finalized as given in table below,

TABLE I
VALUES FOR C1, C2

m c1 c2

10 2.7 2.05

20 3.3 2.7

begin

for: i := 0 to i_size do

Initialize particle with random initialize vi and xi
Sort particle
Find out lbest
for: i := 0 to i_size do

Update particles using eqs. (4) & (5)

(Velocity of particle lbest for updating position)
Find lbest in updated particles

endfor

Compare lbest with gbest
if lbest < gbest then
 gbest = lbest
endif

endfor

random()
begin

for: j := 0 to p_size do
seq[]={j, random arrangement of p_size}

endfor
end

end

Iteration 0

Iteration 1

Iteration n

 M. M. Ghumare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3261-3265

www.ijcsit.com 3263

This provides a way for a fair comparison of discrete
HPSO by controlled and unbiased experiments, which
conforms to some of the criticism discussed by Quan-Ke.
Pan et al. (2008). For example, we simply switch the
neighborhood criterion to be used without any other change
(Without any local search heuristics). We apply the
metaheuristics for benchmark data sets of Taillard (1993)
which have been generated for unrestricted flow-shop
scheduling. The data sets are available from the OR library.
We use problem instances with 20 (ta011–ta030), 50
(ta041– ta060) and 100 (ta071–ta090). All computations
were performed using Intel CORE i5 processer 2.50GHz.
Totally, 50 out of 60 best known solutions provided by
DPSOVND were ultimately improved by proposed IRPSO.

VI. COMPUTATIONAL RESULTS

To compare the proposed heuristic with the existing
heuristics, we carried out the experimentation by
considering problem sizes with number of jobs (n) = 20, 50
and 100 and number of machines (m) = 10 and 20. Ten
independent problem instances were considered for each
problem size. Performance is measured with relative
percentage deviation (RPD) and average relative percentage
deviation (ARPD) given by eq. 7 and eq. 8 respectively,

Table 2 displays comparative evaluation of the proposed

heuristic and DPSOVND based on the ARPD and the percent
of best heuristic solutions. The results show that average
ARPD of the proposed heuristic is significantly less
compared to the existing method. With respect to RPD, the
proposed method performs better than either DPSOVND for
50 out of 60 instances.

All results calculated below are collected from five runs.
Positive values of ARPD predicts effectiveness of IRPSO
with respect to DPSOVND whereas, negative value shows
IRPSO is not able to provide near optimal solution.

TABLE III
PERFORMANCE COMPARISON OF DPSOVND WITH IRPSO

Sr.
No.

Instances n × m ARPD

1. ta011-ta020 20 × 10 6.124

2. ta021-ta030 20 × 20 10.928

3. ta041-ta050 50 × 10 2.187

4. ta051-ta060 50 × 20 7.717

5. ta071-ta080 100 × 10 -7.646

6. ta081-ta090 100 × 20 1.322

Time required to by IRPSO for different set of jobs is
given in table below,

TABLE III
TIME TAKEN FOR EXECUTION

Jobs × Machines

(n × m)

Time

(Seconds)

20 × 20 0.72

50 × 20 5.97

100 × 20 38.95

VII. CONCLUSIONS

This paper has proposed an efficient meta-heuristic
algorithm, Iterative Random PSO (IRPSO) in order to solve
the no-wait flow shop scheduling problem minimizing the
total flow time. The results obtained from proposed IRPSO
are compared with Discrete PSO algorithm hybridized
variable neighborhood descent (DPSOVND). The results
have clearly proved that the proposed IRPSO has
substantially outperformed DPSOVND for 10 and above
machines. Results have shown to be statistically
significantly better than those produced by DPSOVND.
IRPSO avoid to get stuck in local optima due to re-
initialization of population at every iteration.

If the problem size is less than 200 then IRPSO
produces promising results without overhead of local search
technique. If problem size increases it is recommended to
use local search heuristic to get near optimal solutions.

Future research directions can be recommenced as
follows: (1) modifying IRPSO for more than 200 jobs. (2)
considering multi-objective functions at different practical
constraints, and (3) expanding the proposed algorithm to
other similar scheduling problems.

REFERENCES
[1] P.K. Gupta, D.S. Hira, “Operation Research”, pp. 404-406,S.

Chand,1983 J. Kennedy and R. Eberhart, “Particle swarm
optimization,” Proceeding. ICNN’95 - International. Conference
Neural Networks, vol. 4, pp. 1942–1948, 1995.

[2] Yuhui Shi and Russell Eberhart, “Empirical study of particle swarm
optimization”, Evolutionary Computation, 1999

[3] Sandeep Rana, Sanjay Jasola, Rajesh Kumar,” A review on particle
swarm optimization algorithms and their applications to data
clustering”, Artificial Intelligence Review , Volume 35, Issue 3, pp
211-222 , March 2011

[4] Xue B, Zhang M, Browne WN, “Particle swarm optimization for
feature selection in classification: a multi-objective approach.”
IEEE Transactions on Cybernetics, 2013

[5] Kulkarni, R.V., Venayagamoorthy, G.K. “Particle Swarm
Optimization in Wireless-Sensor Networks: A Brief Survey “,IEEE
Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, (Volume:41 , Issue: 2), July 2010

[6] C. Tsai, J. J. P. C. Rodrigues, and S. Member, “Metaheuristic
Scheduling for Cloud : A Survey,” IEEE SYSTEMS JOURNAL, vol.
8, no. 1, pp. 279–291, 2014.

[7] B. Liu, L. Wang, and Y.-H. Jin, “An effective hybrid particle swarm
optimization for no-wait flow shop scheduling,” Int. J. Adv. Manuf.
Technol., vol. 31, no. 9–10, pp. 1001–1011, Jan. 2006.

[8] C.-J. Liao and P. Luarn, “A discrete version of particle swarm
optimization for flowshop scheduling problems,” Comput. Oper.
Res., vol. 34, no. 10, pp. 3099–3111, Oct. 2007.

[9] M. R. Singh and S. S. Mahapatra, “A swarm optimization approach
for flexible flow shop scheduling with multiprocessor tasks,” Int J
Adv Manuf Technol, vol. 62, no. 2012, pp. 267–277, 2012.

[10] Q.-K. Pan, M. Fatih Tasgetiren, and Y.-C. Liang, “A discrete
particle swarm optimization algorithm for the no-wait flowshop

 M. M. Ghumare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3261-3265

www.ijcsit.com 3264

scheduling problem,” Comput. Oper. Res., vol. 35, no. 9, pp. 2807–
2839, Sep. 2008.

[11] I.-H. Kuo, S.-J. Horng, T.-W. Kao, T.-L. Lin, C.-L. Lee, T. Terano,
and Y. Pan, “An efficient flow-shop scheduling algorithm based on
a hybrid particle swarm optimization model,” Expert Syst. Appl., vol.
36, no. 3, pp. 7027–7032, Apr. 2009.

[12] P. Damodaran, A. G. Rao, and S. Mestry, “Particle swarm
optimization for scheduling batch processing machines in a
permutation flowshop,” Int. J. Adv. Manuf. Technol., vol. 64, no. 5–
8, pp. 989–1000, Mar. 2012.

[13] M. Akhshabi, “A hybrid particle swarm optimization algorithm for
a no-wait flow shop scheduling problem with the total flow time,”
Int J AdvManuf Technol, vol. 72, no. 2014, pp. 1181–1188, 2014.

[14] S. Chowdhury, W. Tong, A. Messac, and J. Zhang, “A mixed-
discrete Particle Swarm Optimization algorithm with explicit
diversity-preservation,” Structural Multidisciplinary. Optimization.,
vol. 47, no. 3, pp. 367–388, Dec. 2012.

[15] M. M. Ghumare, “Application of Particle Swarm Optimization for
Production Scheduling,” ICCUBEA, vol. 1, no. 2, DOI
10.1109/ICCUBEA.2015.100, 2015.

[16] R. Ruiz, C. Maroto, and J. Alcaraz, “Solving the flowshop
scheduling problem with sequence dependent setup times using
advanced metaheuristics,” Eur. J. Oper. Res., vol. 165, no. 1, pp.
34–54, Aug. 2005.

[17] A. Abraham, Fatos Xhafa, Metaheuristics for Scheduling in
Industrial and Manufacturing Applications. 2008.

[18] J. Grabowski and J. Pempera, “Some local search algorithms for no-
wait flow-shop problem with makespan criterion,” Comput. Oper.
Res., vol. 32, no. 8, pp. 2197–2212, Aug. 2005

[19] C.-T. Tseng and C.-J. Liao, “A discrete particle swarm optimization
for lot-streaming flowshop scheduling problem,” Eur. J. Oper. Res.,
vol. 191, no. 2, pp. 360–373, Dec. 2008.

[20] Y. Marinakis and M. Marinaki, “Particle swarm optimization with
expanding neighborhood topology for the permutation flowshop
scheduling problem,” Soft Comput., vol. 17, no. 7, pp. 1159–1173,
Feb. 2013.

[21] M. Rabiee, R. S. Rad, M. Mazinani, and R. Shafaei, “An intelligent
hybrid meta-heuristic for solving a case of no-wait two-stage
flexible flow shop scheduling problem with unrelated parallel
machines,” Int J AdvManuf Technol, vol. 71, no. 2014, pp. 1229–
1245, 2014

 M. M. Ghumare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3261-3265

www.ijcsit.com 3265

