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Abstract— Flowshop scheduling is an interdisciplinary 
challenge of addressing major optimality criteria of 
minimizing makespan and total-flow-time. The enumerations 
for finding the probabilities for improving the utilization of 
resources turn this problem towards NP-Hard. Particle Swam 
Optimization (PSO) has proven its ability to find of near 
optimal solution when problem size is large. Local search 
techniques increase ability of PSO and prevent PSO from 
getting stuck into local optima. This paper proposes 
modification in PSO an Iterative Random PSO without use of 
any local search technique. It uses re-initialization of 
population at every iteration; due to which there is no 
possibility of getting stuck into local optima. The proposed 
method achieves total-flow-time objective of flowshop 
scheduling. Computational results are obtained with 110 
benchmark instances of Taillard and compared for the total-
flow-time criterion. Ultimately, 80 instances out of 110 best 
known solutions provided by DPSOVNDwere improved by 
IRPSO. There is still scope of improving IRPSO for dataset of 
5 machines, it gives near optimal solution but not better one. 

Keywords— Metaheuristics; particle swarm optimization (PSO); 
iterative random PSO (IRPSO); flowshop scheduling; total-flow-
time(tft), optimization. 

I. INTRODUCTION 

Flowshop scheduling is an interdisciplinary challenge 
and less contributed by computer science researchers. 
Flowshop scheduling is to processing n jobs on m machines. 
Major challenges to no-wait (continuous) flowshop 
scheduling include total flow time, makespan and 
computation time these are known as optimality criteria[1]. 
Flowshop scheduling is NP-Hard problem. 

Flowshop scheduling aims to find out sequence on 
jobs(n) to be processed on all machines(m). Opted sequence 
must be able to minimize makespan or total-flow-time. 

Flowshop scheduling can be done with greedy methods, 
dynamic programming and artificial intelligence techniques 
such as heuristics and metaheuristics; but it still faces 
problem in achieving optimality criteria. Dynamic 
programming techniques are computationally slow and 
cannot find out solution for large number of problem size. 
Heuristics are feasible to find solution for even greater 
problem size and also have computationally better 
performance. If problem size goes on increasing then 
finding out approximate optimal solution with heuristic is 
less feasible. To overcome this drawback we are adopting 
metaheuristics. 

Metaheuristics work better on higher problem size 
giving approximate optimal solution. It uses local approach; 
constructive approach; or evolutionary approach. 
Metaheuristics include genetic algorithm and swarm 
intelligence techniques such as ant colony algorithm(ACO), 
bee colony algorithm(BCO), particle swarm 
optimization(PSO). 

PSO is invented by James Kennedy and Russell 
Eberhart (1995) to synchrony of flocking behavior of birds’ 
efforts to maintain an optimum distance between 
themselves and their neighbors [2].PSO is evolutionary 
algorithm that has local search ability.  

PSO has broadly shown its ability is optimization. 
Following are some areas where PSO is used for 
optimization: 

1. Data clustering [3];
2. Data classification [4];
3. Wireless sensor networks [5];
4. Cloud computing [6];
5. Production scheduling [7-20];

PSO has effective performance in production shop 
scheduling; including job shop scheduling, flowshop 
scheduling, open shop scheduling. Production scheduling 
can be optimized by optimizing one or more criteria among, 
total flow time, makespan, computation time.  

Total-flow-time is contributed less as compare to 
makespan and computation time by the researchers. 
Minimizing tft results into increased productivity. Among 
flowshop and job shop scheduling, flowshop scheduling has 
less contribution; hence we opted to optimize flowshop 
scheduling. Flowshop scheduling with increased jobs and 
machines size are solved with PSO to minimize makespan, 
total-flow-time and computational time objectives. 

B. Liu, L. Wang et al. [7] optimized no-wait flowshop 
by minimizing total flow time; where simulated annealing 
is used with PSO to enhance local search ability. C.-J. Liao 
and P. Luarn[8] used discrete version of PSO(DPSO); they 
incorporated a local search scheme using insertion and 
interchange mechanism into the proposed PSO algorithm 
(called PSO-LS), with this tft is minimized but it requires 
more computation time. Manas Ranjan Singh & S. S. 
Mahapatra [9] considered flexible flowshop scheduling for 
optimization with PSO using mutation and improved 
makespan optimization. Q-K. Pan, M. Fatih Tasgetirenc et 
al. [10] used discrete PSO DPSO and local search with 
variable neighborhood descent (VND) algorithm based on 
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variable neighborhood search (VNS); it minimizes 
makespan and total flow time for no-wait flowshop. I.-H. 
Kuo, S.-J. Horng et al. [11] used individual 
enhancement(IE) scheme with PSO for enhancement of 
local search ability and as well used random encoding to 
enhance global search ability of PSO and successfully 
minimized makespan. P. Damodaran, A. G. Rao et al. [12] 
proposed heuristics to modify particle position. 
Improvement in heuristic is proposed with constructive 
Knapsack heuristic and batch formation NEH heuristic for 
particle generation; they achieved minimization of 
makespan. M. Akhshabi, R. Tavakkoli-Moghaddam and F. 
Rahnamay-Roodposhti [13] extended PSO with memetic 
algorithm (MA) that hybridizes with a local search method; 
it significantly improved optimization of tft. S. Chowdhury, 
W. Tong, et al. [14] developed mixed-discrete particle 
swarm optimization (MDPSO) for diversity preservation. 
Separate diversity metrics and diversity preservation 
mechanism is carried out for continuous and discrete design 
variables. MDPSO gives better results in case of 
unconstrained problem set. 

With the survey [15] we have found that PSO with 
heuristics for local search increases performance of PSO 
called as hybrid PSO (HPSO). HPSO is able to optimize 
makespan, tft and computation time. 

In this paper we introduce modified PSO called iterative 
random PSO (IRPSO) without using any local search 
algorithm considering total-flow-time objective. 
Computational results depict efficiency of IRPSO as 
compared with discrete PSO by Quan-Ke. Pan, M. Faith 
Tasgetiren, Yun-Chia Liang [10]. 

In section-II we discuss about basics of flowshop 
scheduling; section-III gives PSO algorithm; section-IV 
describes proposed PSO (i.e. IRPSO) and section-V and 
section-VI depicts experimental setup and computational 
results respectively; section-VII concludes the paper. 

II. FLOWSHOP SCHEDULING 

Flowshop scheduling is given as, set of n jobs and m 
machines to be processed in processing time (pij) i.e. 
processing time of ith job on jth machine with the only 
constraint that each job is to be processed once on every 
machine. Sequence α given with {α1, α2…, αn} is n jobs to 
be processed on m machines. Ability of flowshop to allow 
processing of jobs on distinctive machines with constant 
sequence α allows each possible sequence to get considered 
for scheduling. Given matrix of size n x m with processing 
time pij will have (n!) number of permutations i.e. feasible 
solution from which optimal sequence is to be opted. 

Delay between two machines is calculated by δ time. δi,k 

is minimum delay time between start of job i and start of 
job k where job k follows job i. (1≤ i ≤ n, 1 ≤ k ≤n, i ≠ k). 
Delay matrix represents delay time between current job and 
next job to be submitted. 

Makespan is total time requires for one job to complete 
from all machines. Ci is completion time of ith job given by 
eq. (1). δi,k  is given by by eq. (2).  TFT is number total time 
required by all machines to complete entire given jobs by 

eq. (3). The problem to determine a sequence α that 
minimizes TFT. 

For i= 1, 2,…., n and j= 1, 2,…., m 

 

 

 

When number of machines and jobs increases, 
enumerations to find out total permutation also increase 
drastically. Flowshop scheduling is NP-Hard more than 
three machines. Conventional algorithms with exact method 
to find of sequence of jobs on machines are not able to 
provide solution for more than three machines and three 
jobs. Thus we are adopting metaheuristic particle swarm 
optimization (PSO) to optimize flowshop scheduling.Page 
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III. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization is algorithm that start with 
initialization of population (i.e. swarm). Swarm is 
initialized with position and velocity. Search space is where 
swarms move to get appropriate position. Particle changes 
their position and velocity with following equations. 
Particles have their own best coordinates i.e. known as 
pbest. Particle finds their best position by coordinating with 
neighborhood particle and this is known as lbest. When 
particle choose best value from their entire topological 
neighbor then this best value is known as gbest. Finding the 
gbest from lbest boosts performance of PSO. Thus it is 
challenging to find lbest as value of lbest contributes to 
gbest. 

Vi(k+1)  ω*Vi(k) + c1* rand( ) * (Pi(k)  Xi(k))   

                 c2rand()(g(k)-Xi(k))                               

Xi(k1)  Xi(k)  Vi(k+1)                               

Where, 
ω is inertia weight 
Vi(k) is velocity of particle i at iteration k. 
Xi(k) is the position of particle i at iteration k. 
Vi(k+1) is velocity of particle i at iteration k+1. 
Xi(k+1) is the position of particle i at iteration k+1. 
rand( ) is random number between (0,1). 
c1 cognitive acceleration coefficient. 
c2 social acceleration coefficient. 
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IV. ITERATIVE RANDOM PSO 

From survey of “Application of Particle Swarm 
Optimization for Production Scheduling” [15] we have 
analyzed that, parameters of PSO that affect performance 
are, 

i. Local and global acceleration coefficient, 
ii. Inertia weight, 
iii. Initialization of particles. 
iv. Termination Criteria 
We have focused on these basics, and successfully 

modified these parameters to increase performance of PSO 
without use of any heuristic for local search. We are 
proposing PSO with slight modification in dynamics 
mentioned above; modified algorithm is given below. 

Particles update their position depending on choice of 
initial population and finds pbest and lbest. If the initial 
population choice goes incorrect; updating particles at every 
iteration may not give near optimal solution tough local 
search applied.  Thus choosing initial population randomly 
may affect results of PSO. To overcome this drawback we 
are proposing new method called Iterative Random PSO 
(IRPSO). 

IRPSO uses random initialization of particles at every 
iteration and updates the particles depending on given 
initialization. Each job is kept constant on first position for 
random initialization. 

                      

 

 

                      

 

             

                      

 

Fig.1 Population Initialization at Each Iteration 

Velocity is initialized with the following equation, and 
random value is taken between 0 to 1. 

vmin + (vmax - vmin) * random(0,1)           (6) 

At first iteration when particle is initialized, velocity of 
particles is calculated with eq. (1). Afterwards the velocity 
of the particles is updated using particle at global best 
velocity.  

Updating particles at every iteration is done with 
velocity and position change using Eqs. (4) & (5). Each of 
this iteration finds a local best which in turns contribute to 
find out global best. 

Linearly decreasing value of inertia weight (ω) may lack 
global search ability of PSO at the end of run. As re-
initialization of particles at every run avoids PSO to lack 
global search ability; ω is initialized with constant value 
(0.2). 

Total number of evaluation and iteration causes 
premature convergence in PSO. To avoid premature 
convergence; algorithm is terminated after n runs i.e. when 
nth job is initialized at first position algorithm is terminated. 

PSO has always been found to stuck into local optima. 
Tough use of heuristics for local search with PSO has less 
possibility to get stuck to local optima; it may get stuck to 
local optima. IRPSO will never get stuck to the local 
optima due to re-initialization of population after each 
iteration. 

Algorithm for IRPSO: 

Algorithm stated in fig.1 describes working of IRPSO, 
i_size is number of iterations which is equal to number of 
jobs n and p_size is particle count which is also n. 

Algorithm IRPSO: 

 

Fig 2. Pseudo-code for IRPSO 

V. EXPERIMENTAL SETUP 

According to metaheuristic PSO discussed in Section I, 
we applied the iterative random PSO described in Sections 
III and IV. 

Parameters to be considered in PSO implementation are 
local and global acceleration coefficient c1 and c2. Values 
for c1 and c2 were finalized as given in table below, 

TABLE I 
VALUES FOR C1, C2 

m c1 c2 

10 2.7 2.05 

20 3.3 2.7 

begin 

for: i := 0 to i_size do 

Initialize  particle with random initialize vi and xi 
Sort particle  
Find out lbest 
for: i := 0 to i_size do 

Update particles using eqs. (4) & (5) 

(Velocity of particle lbest for updating position) 
Find lbest in updated particles 

endfor 

Compare lbest with gbest 
if lbest < gbest then 
    gbest = lbest 
endif 

endfor 

random() 
begin 

for: j := 0 to p_size do 
seq[]={j, random arrangement of p_size} 

endfor 
end 

end 

Iteration 0 

Iteration 1 

Iteration n 
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This provides a way for a fair comparison of discrete 
HPSO by controlled and unbiased experiments, which 
conforms to some of the criticism discussed by Quan-Ke. 
Pan et al. (2008). For example, we simply switch the 
neighborhood criterion to be used without any other change 
(Without any local search heuristics). We apply the 
metaheuristics for benchmark data sets of Taillard (1993) 
which have been generated for unrestricted flow-shop 
scheduling. The data sets are available from the OR library. 
We use problem instances with 20 (ta011–ta030), 50 
(ta041– ta060) and 100 (ta071–ta090). All computations 
were performed using Intel CORE i5 processer 2.50GHz. 
Totally, 50 out of 60 best known solutions provided by 
DPSOVND were ultimately improved by proposed IRPSO. 

VI. COMPUTATIONAL RESULTS 

To compare the proposed heuristic with the existing 
heuristics, we carried out the experimentation by 
considering problem sizes with number of jobs (n) = 20, 50 
and 100 and number of machines (m) = 10 and 20. Ten 
independent problem instances were considered for each 
problem size. Performance is measured with relative 
percentage deviation (RPD) and average relative percentage 
deviation (ARPD) given by eq. 7 and eq. 8 respectively, 

 

 
Table 2 displays comparative evaluation of the proposed 

heuristic and DPSOVND based on the ARPD and the percent 
of best heuristic solutions. The results show that average 
ARPD of the proposed heuristic is significantly less 
compared to the existing method. With respect to RPD, the 
proposed method performs better than either DPSOVND for 
50 out of 60 instances. 

All results calculated below are collected from five runs. 
Positive values of ARPD predicts effectiveness of IRPSO 
with respect to DPSOVND whereas, negative value shows 
IRPSO is not able to provide near optimal solution. 

TABLE III 
PERFORMANCE COMPARISON OF DPSOVND WITH IRPSO 

Sr. 
No. 

Instances n × m ARPD 

1. ta011-ta020 20 × 10 6.124 

2. ta021-ta030 20 × 20 10.928 

3. ta041-ta050 50 × 10 2.187 

4. ta051-ta060 50 × 20 7.717 

5. ta071-ta080 100 × 10 -7.646 

6. ta081-ta090 100 × 20 1.322 

  

Time required to by IRPSO for different set of jobs is 
given in table below, 

TABLE III 
TIME TAKEN FOR EXECUTION  

Jobs × Machines 

(n × m) 

Time 

(Seconds) 

20 × 20 0.72 

50 × 20 5.97 

100 × 20 38.95 

VII. CONCLUSIONS 

This paper has proposed an efficient meta-heuristic 
algorithm, Iterative Random PSO (IRPSO) in order to solve 
the no-wait flow shop scheduling problem minimizing the 
total flow time. The results obtained from proposed IRPSO 
are compared with Discrete PSO algorithm hybridized 
variable neighborhood descent (DPSOVND). The results 
have clearly proved that the proposed IRPSO has 
substantially outperformed DPSOVND for 10 and above 
machines. Results have shown to be statistically 
significantly better than those produced by DPSOVND. 
IRPSO avoid to get stuck in local optima due to re-
initialization of population at every iteration. 

If the problem size is less than 200 then IRPSO 
produces promising results without overhead of local search 
technique. If problem size increases it is recommended to 
use local search heuristic to get near optimal solutions. 

Future research directions can be recommenced as 
follows: (1) modifying IRPSO for more than 200 jobs. (2) 
considering multi-objective functions at different practical 
constraints, and (3) expanding the proposed algorithm to 
other similar scheduling problems. 

REFERENCES 
[1] P.K. Gupta, D.S. Hira, “Operation Research”, pp. 404-406,S. 

Chand,1983 J. Kennedy and R. Eberhart, “Particle swarm 
optimization,” Proceeding. ICNN’95 - International. Conference 
Neural Networks, vol. 4, pp. 1942–1948, 1995. 

[2] Yuhui Shi and Russell Eberhart, “Empirical study of particle swarm 
optimization”, Evolutionary Computation, 1999 

[3] Sandeep Rana, Sanjay Jasola, Rajesh Kumar,” A review on particle 
swarm optimization algorithms and their applications to data 
clustering”, Artificial Intelligence Review , Volume 35, Issue 3, pp 
211-222 , March 2011  

[4] Xue B, Zhang M, Browne WN, “Particle swarm optimization for 
feature selection in classification: a multi-objective approach.” 
IEEE Transactions on Cybernetics, 2013 

[5] Kulkarni, R.V., Venayagamoorthy, G.K. “Particle Swarm 
Optimization in Wireless-Sensor Networks: A Brief Survey “,IEEE 
Transactions on Systems, Man, and Cybernetics, Part C: 
Applications and Reviews,  (Volume:41 ,  Issue: 2 ), July 2010 

[6] C. Tsai, J. J. P. C. Rodrigues, and S. Member, “Metaheuristic 
Scheduling for Cloud : A Survey,” IEEE SYSTEMS JOURNAL, vol. 
8, no. 1, pp. 279–291, 2014.  

[7] B. Liu, L. Wang, and Y.-H. Jin, “An effective hybrid particle swarm 
optimization for no-wait flow shop scheduling,” Int. J. Adv. Manuf. 
Technol., vol. 31, no. 9–10, pp. 1001–1011, Jan. 2006. 

[8] C.-J. Liao and P. Luarn, “A discrete version of particle swarm 
optimization for flowshop scheduling problems,” Comput. Oper. 
Res., vol. 34, no. 10, pp. 3099–3111, Oct. 2007. 

[9] M. R. Singh and S. S. Mahapatra, “A swarm optimization approach 
for flexible flow shop scheduling with multiprocessor tasks,” Int J 
Adv Manuf Technol, vol. 62, no. 2012, pp. 267–277, 2012. 

[10] Q.-K. Pan, M. Fatih Tasgetiren, and Y.-C. Liang, “A discrete 
particle swarm optimization algorithm for the no-wait flowshop 

 M. M. Ghumare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3261-3265

www.ijcsit.com 3264



scheduling problem,” Comput. Oper. Res., vol. 35, no. 9, pp. 2807–
2839, Sep. 2008. 

[11] I.-H. Kuo, S.-J. Horng, T.-W. Kao, T.-L. Lin, C.-L. Lee, T. Terano, 
and Y. Pan, “An efficient flow-shop scheduling algorithm based on 
a hybrid particle swarm optimization model,” Expert Syst. Appl., vol. 
36, no. 3, pp. 7027–7032, Apr. 2009. 

[12] P. Damodaran, A. G. Rao, and S. Mestry, “Particle swarm 
optimization for scheduling batch processing machines in a 
permutation flowshop,” Int. J. Adv. Manuf. Technol., vol. 64, no. 5–
8, pp. 989–1000, Mar. 2012. 

[13] M. Akhshabi, “A hybrid particle swarm optimization algorithm for 
a no-wait flow shop scheduling problem with the total flow time,” 
Int J AdvManuf Technol, vol. 72, no. 2014, pp. 1181–1188, 2014. 

[14] S. Chowdhury, W. Tong, A. Messac, and J. Zhang, “A mixed-
discrete Particle Swarm Optimization algorithm with explicit 
diversity-preservation,” Structural Multidisciplinary. Optimization., 
vol. 47, no. 3, pp. 367–388, Dec. 2012. 

[15] M. M. Ghumare, “Application of Particle Swarm Optimization for 
Production Scheduling,” ICCUBEA, vol. 1, no. 2, DOI 
10.1109/ICCUBEA.2015.100, 2015. 

[16] R. Ruiz, C. Maroto, and J. Alcaraz, “Solving the flowshop 
scheduling problem with sequence dependent setup times using 
advanced metaheuristics,” Eur. J. Oper. Res., vol. 165, no. 1, pp. 
34–54, Aug. 2005. 

[17] A. Abraham, Fatos Xhafa, Metaheuristics for Scheduling in 
Industrial and Manufacturing Applications. 2008. 

[18] J. Grabowski and J. Pempera, “Some local search algorithms for no-
wait flow-shop problem with makespan criterion,” Comput. Oper. 
Res., vol. 32, no. 8, pp. 2197–2212, Aug. 2005 

[19] C.-T. Tseng and C.-J. Liao, “A discrete particle swarm optimization 
for lot-streaming flowshop scheduling problem,” Eur. J. Oper. Res., 
vol. 191, no. 2, pp. 360–373, Dec. 2008. 

[20] Y. Marinakis and M. Marinaki, “Particle swarm optimization with 
expanding neighborhood topology for the permutation flowshop 
scheduling problem,” Soft Comput., vol. 17, no. 7, pp. 1159–1173, 
Feb. 2013. 

[21] M. Rabiee, R. S. Rad, M. Mazinani, and R. Shafaei, “An intelligent 
hybrid meta-heuristic for solving a case of no-wait two-stage 
flexible flow shop scheduling problem with unrelated parallel 
machines,” Int J AdvManuf Technol, vol. 71, no. 2014, pp. 1229–
1245, 2014 

 

 M. M. Ghumare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3261-3265

www.ijcsit.com 3265




